Imagery Service Analysis

Analysis of OpenStreetMap changesets that use imagery services from the imagery_used column. The imagery tag is set automatically by iD, Vespucci and Go Map!!. As other editors are not using it and iD is vastly more popular than other relevant editors this graph is very close to 'market share of iD by edit volume'. JOSM users are typically using source field to note actually used sources.

Monthly Percentage of Edits and Contributors Using Imagery Services

code
df = duckdb.sql("""
WITH monthly_with_imagery AS (
    SELECT 
        year,
        month,
        CONCAT(year, '-', LPAD(CAST(month as VARCHAR), 2, '0')) as months,
        COUNT(DISTINCT user_name) as contributors_with_imagery,
        SUM(edit_count) as edits_with_imagery
    FROM '../changeset_data/year=*/month=*/*.parquet'
    WHERE imagery_used IS NOT NULL
    GROUP BY year, month
),
monthly_total AS (
    SELECT 
        year,
        month,
        CONCAT(year, '-', LPAD(CAST(month as VARCHAR), 2, '0')) as months,
        COUNT(DISTINCT user_name) as total_contributors,
        SUM(edit_count) as total_edits
    FROM '../changeset_data/year=*/month=*/*.parquet'
    GROUP BY year, month
)
SELECT 
    mt.months,
    COALESCE(ROUND((mwi.contributors_with_imagery * 100.0) / mt.total_contributors, 2), 0) as 'Percentage Contributors with Imagery',
    COALESCE(ROUND((mwi.edits_with_imagery * 100.0) / mt.total_edits, 2), 0) as 'Percentage Edits with Imagery'
FROM monthly_total mt
LEFT JOIN monthly_with_imagery mwi ON mt.year = mwi.year AND mt.month = mwi.month
ORDER BY mt.year, mt.month
""").df()

util.show_figure(
    [
        util.FigureConfig(
            title="Monthly Percentage of Contributors Using Imagery Services",
            label="Contributors",
            x_col="months",
            y_col="Percentage Contributors with Imagery",
            y_unit_hover_template="%",
            query_or_df=df,
        ),
        util.FigureConfig(
            title="Monthly Percentage of Edits Using Imagery Services",
            label="Edits",
            x_col="months",
            y_col="Percentage Edits with Imagery",
            y_unit_hover_template="%",
            query_or_df=df,
        ),
    ]
)

Monthly Top 10 Imagery Services: Edits, Accumulated Edits, Contributors and Accumulated Contributors

code
# Get top 10 imagery services by total edits
df = duckdb.sql("""
WITH imagery_expanded AS (
    SELECT 
        year,
        month,
        user_name,
        edit_count,
        unnest(imagery_used) as imagery_service
    FROM '../changeset_data/year=*/month=*/*.parquet'
    WHERE imagery_used IS NOT NULL
),
top_imagery AS (
    SELECT imagery_service
    FROM (
        SELECT
            imagery_service,
            SUM(edit_count) as total_edits
        FROM imagery_expanded
        GROUP BY imagery_service
        ORDER BY total_edits DESC
        LIMIT 10
    )
),
monthly_imagery_data AS (
    SELECT 
        ie.year,
        ie.month,
        CONCAT(ie.year, '-', LPAD(CAST(ie.month as VARCHAR), 2, '0')) as months,
        ie.imagery_service,
        COUNT(DISTINCT ie.user_name) as "Contributors",
        SUM(ie.edit_count) as "Edits"
    FROM imagery_expanded ie
    WHERE ie.imagery_service IN (SELECT imagery_service FROM top_imagery)
    GROUP BY ie.year, ie.month, ie.imagery_service
)
SELECT 
    months,
    imagery_service,
    "Contributors",
    "Edits",
    SUM("Contributors") OVER (PARTITION BY imagery_service ORDER BY year, month) as "Contributors Accumulated",
    SUM("Edits") OVER (PARTITION BY imagery_service ORDER BY year, month) as "Edits Accumulated"
FROM monthly_imagery_data
ORDER BY year, month, imagery_service
""").df()

util.show_figure(
    [
        util.FigureConfig(
            title="Monthly Edits by Top 10 Imagery Services",
            label="Edits",
            x_col="months",
            y_col="Edits",
            group_col="imagery_service",
            query_or_df=df,
        ),
        util.FigureConfig(
            title="Accumulated Edits by Top 10 Imagery Services",
            label="Edits Accumulated",
            x_col="months",
            y_col="Edits Accumulated",
            group_col="imagery_service",
            query_or_df=df,
        ),
        util.FigureConfig(
            title="Monthly Contributors by Top 10 Imagery Services",
            label="Contributors",
            x_col="months",
            y_col="Contributors",
            group_col="imagery_service",
            query_or_df=df,
        ),
        util.FigureConfig(
            title="Accumulated Contributors by Top 10 Imagery Services",
            label="Contributors Accumulated",
            x_col="months",
            y_col="Contributors Accumulated",
            group_col="imagery_service",
            query_or_df=df,
        ),
    ]
)

Top 100 Imagery Services Yearly

code
import json

# Load replacement rules for clickable links
with open("../config/replace_rules_imagery_and_source.json") as f:
    imagery_name_to_html_link = {
        name: f'<a href="{item["link"]}">{name}</a>' for name, item in json.load(f).items() if "link" in item
    }

query = """
WITH imagery_expanded AS (
    SELECT 
        year,
        user_name,
        edit_count,
        unnest(imagery_used) as imagery_service
    FROM '../changeset_data/year=*/month=*/*.parquet'
    WHERE imagery_used IS NOT NULL
),
user_first_year AS (
    SELECT 
        user_name,
        imagery_service,
        MIN(year) as first_year
    FROM imagery_expanded
    GROUP BY user_name, imagery_service
),
imagery_totals AS (
    SELECT
        imagery_service as "Imagery Service",
        CAST(SUM(edit_count) as BIGINT) as total_edits_all_time,
        CAST(SUM(CASE WHEN year >= 2021 THEN edit_count ELSE 0 END) as BIGINT) as total_edits_2021_now,
        CAST(COUNT(DISTINCT user_name) as BIGINT) as total_contributors_all_time,
        CAST(COUNT(DISTINCT CASE WHEN year >= 2021 THEN user_name END) as BIGINT) as total_contributors_2021_now
    FROM imagery_expanded
    GROUP BY imagery_service
),
yearly_metrics AS (
    SELECT
        ie.year,
        ie.imagery_service as "Imagery Service",
        CAST(SUM(ie.edit_count) as BIGINT) as "Edits",
        CAST(COUNT(DISTINCT ie.user_name) as BIGINT) as "Contributors",
        CAST(COUNT(DISTINCT CASE WHEN ufy.first_year = ie.year THEN ie.user_name END) as BIGINT) as "New Contributors"
    FROM imagery_expanded ie
    LEFT JOIN user_first_year ufy 
        ON ie.user_name = ufy.user_name AND ie.imagery_service = ufy.imagery_service
    GROUP BY ie.year, ie.imagery_service
)
SELECT 
    ym.year,
    ym."Imagery Service",
    ym."Edits",
    ym."New Contributors",
    ym."Contributors",
    it.total_edits_all_time as "Total Edits",
    it.total_edits_2021_now as "Total Edits (2021 - Now)",
    it.total_contributors_all_time as "Total Contributors",
    it.total_contributors_2021_now as "Total Contributors (2021 - Now)"
FROM yearly_metrics ym
JOIN imagery_totals it
    ON ym."Imagery Service" = it."Imagery Service"
ORDER BY year DESC, "Edits" DESC
"""
df = duckdb.sql(query).df()

# Apply HTML links to imagery service names
df["Imagery Service"] = df["Imagery Service"].apply(
    lambda name: imagery_name_to_html_link[name] if name in imagery_name_to_html_link else name
)

top_100_contributors = df.groupby("Imagery Service")["Total Contributors"].first().nlargest(100)
top_100_contributors_2021_now = df.groupby("Imagery Service")["Total Contributors (2021 - Now)"].first().nlargest(100)
top_100_edits = df.groupby("Imagery Service")["Total Edits"].first().nlargest(100)
top_100_edits_2021_now = df.groupby("Imagery Service")["Total Edits (2021 - Now)"].first().nlargest(100)

table_configs = [
    util.TableConfig(
        title="Top 100 Imagery Services by Contributors",
        query_or_df=df[df["Imagery Service"].isin(top_100_contributors.index)],
        x_axis_col="year",
        y_axis_col="Imagery Service",
        value_col="Contributors",
        center_columns=["Rank", "Imagery Service"],
        sum_col="Total Contributors",
    ),
    util.TableConfig(
        title="Top 100 Imagery Services by Contributors 2021 - Now",
        query_or_df=df[(df["Imagery Service"].isin(top_100_contributors_2021_now.index)) & (df["year"] >= 2021)],
        x_axis_col="year",
        y_axis_col="Imagery Service",
        value_col="Contributors",
        center_columns=["Rank", "Imagery Service"],
        sum_col="Total Contributors (2021 - Now)",
    ),
    util.TableConfig(
        title="Top 100 Imagery Services by Edits",
        query_or_df=df[df["Imagery Service"].isin(top_100_edits.index)],
        x_axis_col="year",
        y_axis_col="Imagery Service",
        value_col="Edits",
        center_columns=["Rank", "Imagery Service"],
        sum_col="Total Edits",
    ),
    util.TableConfig(
        title="Top 100 Imagery Services by Edits 2021 - Now",
        query_or_df=df[(df["Imagery Service"].isin(top_100_edits_2021_now.index)) & (df["year"] >= 2021)],
        x_axis_col="year",
        y_axis_col="Imagery Service",
        value_col="Edits",
        center_columns=["Rank", "Imagery Service"],
        sum_col="Total Edits (2021 - Now)",
    ),
]

util.show_tables(table_configs)
Rank Imagery Service 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Total Contributors
1 Bing Aerial Imagery 55,606 123,437 130,064 134,295 166,720 174,812 155,602 169,325 151,032 126,243 148,789 153,769 129,247 1,306,449
2 .gpx data file 835 4,243 7,927 28,777 45,339 50,670 47,816 76,173 82,985 52,319 45,790 11,851 9,395 367,367
3 Maxar Imagery 0 0 0 0 0 0 17,936 35,634 53,021 48,224 30,163 221 10 150,593
4 Esri World Imagery 0 0 0 1 4,439 14,942 19,510 25,003 23,783 21,113 34,686 34,227 31,082 143,071
5 Custom 345 1,807 4,729 9,193 19,536 12,985 14,523 37,108 30,860 4,339 2,912 3,622 3,036 128,144
6 OpenStreetMap (Standard) 0 0 0 1,444 10,559 12,257 12,768 11,741 13,993 13,432 14,584 14,558 13,114 84,971
7 Mapbox Satellite 0 4,168 6,217 9,999 9,165 7,459 8,491 10,857 14,309 11,113 17,925 11,016 9,527 83,194
8 .geojson data file 0 0 0 0 9 87 165 572 334 320 9,326 36,367 21,331 62,500
9 BDOrtho 0 0 0 0 0 9,870 12,262 14,168 13,363 12,923 13,228 13,109 9,076 60,847
10 DigitalGlobe Imagery (now Maxar) 0 0 0 1 14,193 19,685 12,718 14 3 3 0 0 0 38,697
11 GPS 912 4,325 4,547 4,323 5,420 5,156 5,271 5,187 4,391 3,644 3,619 3,550 3,331 36,580
12 Geoportal 2: Orthophotomap 0 0 0 0 1 3,265 4,817 5,052 3,270 5,698 5,749 6,105 5,711 24,063
13 PNOA Spain 0 0 0 256 4,186 4,283 4,613 3,489 4,190 4,560 3,751 3,582 3,271 23,638
14 None 308 1,684 1,811 1,735 1,538 1,867 2,690 2,641 2,892 3,793 2,522 3,203 2,888 23,630
15 MAPNIK 1,117 4,851 6,283 8,281 255 115 48 4,155 40 9 11 3 0 23,041
16 Mapillary 0 0 0 1,551 3,253 3,297 3,083 3,431 3,380 2,724 2,720 2,623 2,723 19,868
17 basemap.at 13 171 391 2,708 2,983 3,191 3,101 3,351 3,418 3,495 3,511 3,631 3,474 19,357
18 Bavaria (80 cm) 0 0 0 43 259 3,656 4,059 4,602 4,769 4,663 4,705 3,715 17 18,627
19 PDOK aerial imagery 0 0 0 0 0 2,229 3,354 2,854 3,193 3,199 3,035 3,287 3,359 15,733
20 OpenTopoMap 0 0 0 0 1 182 2,358 3,290 2,971 2,099 2,591 2,694 2,368 14,100
21 Geoportal.gov.pl (Orthophotomap) 0 262 1,095 4,496 4,887 3,227 139 15 0 1 1 1 0 10,733
22 NRW Orthophoto 0 0 0 0 0 0 0 1,176 4,453 4,371 3,141 514 24 9,389
23 swisstopo SWISSIMAGE 0 0 0 0 0 0 0 0 1,315 2,456 2,616 2,714 2,821 7,973
24 Saxony latest aerial imagery 0 0 0 0 0 1,299 1,506 1,309 1,657 1,609 1,763 1,813 1,708 7,362
25 OpenStreetCam Images 0 0 0 0 363 2,240 2,124 2,248 2,200 410 12 1 2 7,142
26 BD Ortho IGN 0 0 0 0 0 0 0 0 0 0 0 0 6,531 6,531
27 Hesse DOP20 0 0 0 0 0 0 0 0 0 2,115 2,262 2,411 2,315 6,248
28 MML Orthophoto 0 0 0 0 0 961 1,104 960 1,359 1,225 1,312 1,537 1,256 5,958
29 Norway Orthophoto 0 0 0 0 0 780 1,167 1,016 1,166 1,218 1,211 1,277 1,357 5,861
30 South Africa CD:NGI Aerial 17 36 99 705 889 735 681 796 661 477 666 833 616 5,712
31 NRW Orthophoto (RGB) 0 0 0 0 0 0 0 0 0 0 0 2,125 4,313 5,390
32 Japan GSI 0 0 27 709 513 850 1,162 589 817 754 864 965 771 5,337
33 AIV Flanders 0 0 0 0 0 0 1,148 1,664 1,909 1,859 1,204 6 0 5,226
34 SPW(allonie) most recent aerial imagery 0 0 0 0 0 725 969 945 1,133 1,097 1,201 1,131 1,038 4,972
35 OpenRailwayMap 0 0 0 0 0 6 17 798 1,101 851 852 936 831 4,886
36 CyclOSM 0 0 0 0 0 0 0 20 515 2,746 1,795 58 24 4,680
37 SDFE aerial imagery 0 0 0 0 574 1,052 937 753 1,154 1,119 758 10 0 4,343
38 Orthophotos of mainland Portugal - 25cm - 2018 (DGT) 0 0 0 0 0 0 0 0 668 1,466 1,514 1,822 282 4,275
39 Cadastre 0 0 0 0 0 821 1,043 1,175 1,087 994 1,000 978 893 4,246
40 Stamen Terrain 0 0 0 120 556 749 661 565 696 629 380 44 24 4,104
41 LINZ NZ Aerial Imagery 0 0 0 0 324 693 665 603 796 697 836 825 830 4,099
42 PDOK Luchtfoto Beeldmateriaal 25cm 0 0 0 0 2,632 1,901 1 0 0 0 0 0 0 3,924
43 KartaView Images 0 0 0 0 0 0 0 0 2 1,195 1,370 1,317 1,315 3,693
44 Geoportal 2 Nazwy ulic 0 0 0 0 0 0 0 0 3,484 144 131 136 118 3,646
45 NRW Liegenschaftskataster 0 0 0 0 0 0 0 0 0 0 2,179 1,858 241 3,487
46 Belgium AGIV Orthophoto Flanders 0 0 107 1,493 1,722 1,037 3 0 1 0 1 0 0 3,433
47 NC OneMap Latest Orthoimagery (Natural Color) 0 0 0 0 0 0 0 0 2 802 1,247 1,148 1,264 3,383
48 Czechia CUZK orthophoto 0 0 0 0 0 0 0 0 0 0 0 1,909 2,079 3,274
49 Ortofotomozaika SR 0 0 0 0 0 0 0 50 565 957 1,203 1,097 1,059 3,252
50 Digitaal Vlaanderen most recent aerial imagery 0 0 0 0 0 0 0 0 0 0 974 1,673 1,704 3,224
51 LPI NSW Imagery 0 0 5 202 1,005 1,120 996 757 4 2 0 0 0 3,216
52 Thunderforest Landscape 0 0 0 1,132 1,323 683 18 12 3 1 2 2 2 2,910
53 National Agriculture Imagery Program 0 0 0 0 0 0 240 644 670 507 654 791 654 2,813
54 MD Latest 6 Inch Aerial Imagery 0 0 0 0 25 38 63 54 311 932 828 783 753 2,799
55 USGS Topographic Maps 68 140 216 230 278 394 383 418 547 536 531 522 464 2,766
56 TIGER Roads 111 26 0 0 119 447 739 736 845 420 320 296 308 2,564
57 Berlin aerial photography 0 0 0 0 0 762 1,215 950 367 0 0 0 0 2,544
58 OpenAerialMap Mosaic, by Kontur.io 0 0 0 0 0 0 0 0 0 127 1,017 862 797 2,544
59 .kml data file 0 0 0 0 53 413 438 559 387 366 454 467 493 2,446
60 SDFI 0 0 0 0 0 0 0 0 0 0 523 1,243 1,293 2,385
61 MassGIS 2021 Aerial Imagery 0 0 0 0 0 0 0 0 0 1,065 1,169 789 43 2,337
62 dgu.hr: Croatia 2019-2020 aerial imagery 0 0 0 0 0 0 0 0 447 887 887 798 35 2,281
63 GURS: Slovenia orthophoto 25cm (DOF025) 0 0 0 0 0 0 0 156 587 631 669 701 680 2,240
64 Lithuania - NŽT ORT10LT 0 81 79 96 294 345 310 285 365 377 424 424 397 2,204
65 Mapilio Images 0 0 0 0 0 0 0 0 0 0 548 1,097 1,151 2,187
66 © GeoBasis-DE/LVermGeo LSA, DOP20 0 0 0 0 0 0 0 0 133 380 883 914 827 2,173
67 Brandenburg GeoBasis-DE/LGB (latest) / DOP20c 0 0 0 0 0 0 0 0 0 0 252 1,247 1,279 2,158
68 NRW vDOP 0 0 0 0 0 0 0 0 1 0 121 1,973 98 2,046
69 Helsinki region orthophoto 0 0 0 0 0 47 445 383 457 510 493 504 493 2,045
70 HOTOSM 0 0 0 0 2,028 1 0 0 0 0 0 0 0 2,028
71 Strava 4 290 378 546 571 318 112 110 76 53 133 283 288 1,988
72 ICGC - Ortofoto de Catalunya 1:2.500 vigent 0 0 0 0 0 0 0 0 0 0 966 1,200 304 1,975
73 GeoScribble latest notes 0 0 0 0 0 0 0 0 0 0 0 605 1,235 1,748
74 OpenStreetMap 1,708 1 1 0 4 7 0 0 1 2 4 5 2 1,729
75 GRAFCAN OrtoExpress Urbana - Canary Islands 0 0 0 0 0 0 16 235 348 431 427 447 407 1,726
76 Kanton Zurich, Orthofoto ZH Frühjahr 2021 RGB 5cm 0 0 0 0 0 0 0 0 0 431 692 771 527 1,700
77 AGIV Flanders most recent aerial imagery 0 0 0 0 0 1,129 879 1 0 0 0 0 0 1,699
78 Catastro Spain 0 0 0 0 0 220 337 360 383 366 374 447 428 1,659
79 DCS NSW Imagery 0 0 0 0 0 0 0 305 982 585 189 175 154 1,658
80 MassGIS 2019 Orthos 0 0 0 0 0 0 0 278 1,356 268 80 25 1 1,657
81 OS OpenData StreetView 58 192 208 214 285 310 443 451 302 0 0 0 0 1,649
82 Panoramax Images 0 0 0 0 0 0 0 0 0 0 0 597 1,320 1,645
83 PNOA-Spain-TMS 0 0 0 0 0 0 0 1,573 29 0 0 0 0 1,596
84 StratMap CapArea, Brazos & Kerr Imagery (Natural Color 2021) 0 0 0 0 0 0 0 0 136 510 499 412 448 1,575
85 MassGIS 2023 Aerial Imagery 0 0 0 0 0 0 0 0 0 0 0 593 1,202 1,530
86 Actueel_ortho25_WMS 0 0 0 0 0 0 0 1,462 58 0 0 0 0 1,489
87 FR-Cadastre 0 0 40 681 842 281 1 1 3 0 0 0 0 1,439
88 Latest available ortho geoportail.lu 0 0 0 0 0 243 262 231 281 302 305 298 307 1,437
89 Berlin/Geoportal DOP20RGBI (2022) 0 0 0 0 0 0 0 0 0 475 1,159 16 5 1,421
90 Orthophoto (2016–2018), 1:5000, Latvia 0 0 0 0 0 0 0 0 373 419 437 447 436 1,419
91 Berlin/Geoportal DOP20RGBI (2024) 0 0 0 0 0 0 0 0 0 0 0 615 959 1,345
92 South Tyrol Orthofoto 2020 0 0 0 0 0 0 0 0 225 548 575 412 23 1,344
93 Berlin/Geoportal DOP20RGB (2021) 0 0 0 0 0 0 0 0 521 997 21 12 5 1,325
94 Orthophotos of mainland Portugal - 25 cm - 2018 (DGT) 0 0 0 0 0 0 0 0 0 0 0 0 1,308 1,308
95 Baden-Württemberg DOP20 0 0 0 0 0 0 0 0 0 0 0 0 1,247 1,247
96 South Tyrol Orthofoto 2014/2015 0 0 0 0 222 391 456 292 295 6 7 6 3 1,247
97 Kanton Zürich 2015 10cm 0 0 0 376 481 533 262 0 0 0 0 0 0 1,227
98 Baden-Würrtemberg DOP20 0 0 0 0 0 0 0 0 0 0 0 231 1,094 1,221
99 Stuttgart Luftbild Stadtmessungsamt 2021 0 0 0 0 0 0 0 0 0 372 645 490 6 1,162
100 Berlin/Geoportal DOP20RGBI (2023) 0 0 0 0 0 0 0 0 0 0 272 973 18 1,124