Analysis of OpenStreetMap changesets that use source tags to indicate data sources.
df = duckdb.sql("""
WITH monthly_with_source AS (
SELECT
year,
month,
CONCAT(year, '-', LPAD(CAST(month as VARCHAR), 2, '0')) as months,
COUNT(DISTINCT user_name) as contributors_with_source,
SUM(edit_count) as edits_with_source
FROM '../changeset_data/year=*/month=*/*.parquet'
WHERE source IS NOT NULL
GROUP BY year, month
),
monthly_total AS (
SELECT
year,
month,
CONCAT(year, '-', LPAD(CAST(month as VARCHAR), 2, '0')) as months,
COUNT(DISTINCT user_name) as total_contributors,
SUM(edit_count) as total_edits
FROM '../changeset_data/year=*/month=*/*.parquet'
GROUP BY year, month
)
SELECT
mt.months,
COALESCE(ROUND((mws.contributors_with_source * 100.0) / mt.total_contributors, 2), 0) as 'Percentage Contributors with Source',
COALESCE(ROUND((mws.edits_with_source * 100.0) / mt.total_edits, 2), 0) as 'Percentage Edits with Source'
FROM monthly_total mt
LEFT JOIN monthly_with_source mws ON mt.year = mws.year AND mt.month = mws.month
ORDER BY mt.year, mt.month
""").df()
util.show_figure(
[
util.FigureConfig(
title="Monthly Percentage of Contributors Using Source Tags",
label="Contributors",
x_col="months",
y_col="Percentage Contributors with Source",
y_unit_hover_template="%",
query_or_df=df,
),
util.FigureConfig(
title="Monthly Percentage of Edits Using Source Tags",
label="Edits",
x_col="months",
y_col="Percentage Edits with Source",
y_unit_hover_template="%",
query_or_df=df,
),
]
)
# Get top 10 sources by total edits
df = duckdb.sql("""
WITH source_expanded AS (
SELECT
year,
month,
user_name,
edit_count,
unnest(source) as source_tag
FROM '../changeset_data/year=*/month=*/*.parquet'
WHERE source IS NOT NULL
),
top_sources AS (
SELECT source_tag
FROM (
SELECT
source_tag,
SUM(edit_count) as total_edits
FROM source_expanded
GROUP BY source_tag
ORDER BY total_edits DESC
LIMIT 10
)
),
monthly_source_data AS (
SELECT
se.year,
se.month,
CONCAT(se.year, '-', LPAD(CAST(se.month as VARCHAR), 2, '0')) as months,
se.source_tag,
COUNT(DISTINCT se.user_name) as "Contributors",
SUM(se.edit_count) as "Edits"
FROM source_expanded se
WHERE se.source_tag IN (SELECT source_tag FROM top_sources)
GROUP BY se.year, se.month, se.source_tag
)
SELECT
months,
source_tag,
"Contributors",
"Edits",
SUM("Contributors") OVER (PARTITION BY source_tag ORDER BY year, month) as "Contributors Accumulated",
SUM("Edits") OVER (PARTITION BY source_tag ORDER BY year, month) as "Edits Accumulated"
FROM monthly_source_data
ORDER BY year, month, source_tag
""").df()
util.show_figure(
[
util.FigureConfig(
title="Monthly Edits by Top 10 Source Tags",
label="Edits",
x_col="months",
y_col="Edits",
group_col="source_tag",
query_or_df=df,
),
util.FigureConfig(
title="Accumulated Edits by Top 10 Source Tags",
label="Edits Accumulated",
x_col="months",
y_col="Edits Accumulated",
group_col="source_tag",
query_or_df=df,
),
util.FigureConfig(
title="Monthly Contributors by Top 10 Source Tags",
label="Contributors",
x_col="months",
y_col="Contributors",
group_col="source_tag",
query_or_df=df,
),
util.FigureConfig(
title="Accumulated Contributors by Top 10 Source Tags",
label="Contributors Accumulated",
x_col="months",
y_col="Contributors Accumulated",
group_col="source_tag",
query_or_df=df,
),
]
)
import json
# Load replacement rules for clickable links
with open("../config/replace_rules_imagery_and_source.json") as f:
source_name_to_html_link = {
name: f'<a href="{item["link"]}">{name}</a>' for name, item in json.load(f).items() if "link" in item
}
query = """
WITH source_expanded AS (
SELECT
year,
user_name,
edit_count,
unnest(source) as source_tag
FROM '../changeset_data/year=*/month=*/*.parquet'
WHERE source IS NOT NULL
),
user_first_year AS (
SELECT
user_name,
source_tag,
MIN(year) as first_year
FROM source_expanded
GROUP BY user_name, source_tag
),
source_totals AS (
SELECT
source_tag as "Source",
CAST(SUM(edit_count) as BIGINT) as total_edits_all_time,
CAST(SUM(CASE WHEN year >= 2021 THEN edit_count ELSE 0 END) as BIGINT) as total_edits_2021_now,
CAST(COUNT(DISTINCT user_name) as BIGINT) as total_contributors_all_time,
CAST(COUNT(DISTINCT CASE WHEN year >= 2021 THEN user_name END) as BIGINT) as total_contributors_2021_now
FROM source_expanded
GROUP BY source_tag
),
yearly_metrics AS (
SELECT
se.year,
se.source_tag as "Source",
CAST(SUM(se.edit_count) as BIGINT) as "Edits",
CAST(COUNT(DISTINCT se.user_name) as BIGINT) as "Contributors",
CAST(COUNT(DISTINCT CASE WHEN ufy.first_year = se.year THEN se.user_name END) as BIGINT) as "New Contributors"
FROM source_expanded se
LEFT JOIN user_first_year ufy
ON se.user_name = ufy.user_name AND se.source_tag = ufy.source_tag
GROUP BY se.year, se.source_tag
)
SELECT
ym.year,
ym."Source",
ym."Edits",
ym."New Contributors",
ym."Contributors",
st.total_edits_all_time as "Total Edits",
st.total_edits_2021_now as "Total Edits (2021 - Now)",
st.total_contributors_all_time as "Total Contributors",
st.total_contributors_2021_now as "Total Contributors (2021 - Now)"
FROM yearly_metrics ym
JOIN source_totals st
ON ym."Source" = st."Source"
ORDER BY year DESC, "Edits" DESC
"""
df = duckdb.sql(query).df()
# Apply HTML links to source names
df["Source"] = df["Source"].apply(
lambda name: source_name_to_html_link[name] if name in source_name_to_html_link else name
)
top_100_contributors = df.groupby("Source")["Total Contributors"].first().nlargest(100)
top_100_contributors_2021_now = df.groupby("Source")["Total Contributors (2021 - Now)"].first().nlargest(100)
top_100_edits = df.groupby("Source")["Total Edits"].first().nlargest(100)
top_100_edits_2021_now = df.groupby("Source")["Total Edits (2021 - Now)"].first().nlargest(100)
table_configs = [
util.TableConfig(
title="Top 100 Sources by Contributors",
query_or_df=df[df["Source"].isin(top_100_contributors.index)],
x_axis_col="year",
y_axis_col="Source",
value_col="Contributors",
center_columns=["Rank", "Source"],
sum_col="Total Contributors",
),
util.TableConfig(
title="Top 100 Sources by Contributors 2021 - Now",
query_or_df=df[(df["Source"].isin(top_100_contributors_2021_now.index)) & (df["year"] >= 2021)],
x_axis_col="year",
y_axis_col="Source",
value_col="Contributors",
center_columns=["Rank", "Source"],
sum_col="Total Contributors (2021 - Now)",
),
util.TableConfig(
title="Top 100 Sources by Edits",
query_or_df=df[df["Source"].isin(top_100_edits.index)],
x_axis_col="year",
y_axis_col="Source",
value_col="Edits",
center_columns=["Rank", "Source"],
sum_col="Total Edits",
),
util.TableConfig(
title="Top 100 Sources by Edits 2021 - Now",
query_or_df=df[(df["Source"].isin(top_100_edits_2021_now.index)) & (df["year"] >= 2021)],
x_axis_col="year",
y_axis_col="Source",
value_col="Edits",
center_columns=["Rank", "Source"],
sum_col="Total Edits (2021 - Now)",
),
]
util.show_tables(table_configs)
| Rank | Source | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | Total Contributors |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Local Knowledge | 15 | 39 | 96 | 124 | 299 | 1,112 | 1,185 | 1,155 | 6,004 | 13,364 | 14,866 | 16,846 | 16,774 | 16,676 | 24,925 | 73,065 | 73,249 | 195,386 |
| 2 | Survey | 50 | 151 | 266 | 332 | 936 | 6,016 | 6,994 | 6,815 | 16,397 | 17,965 | 18,067 | 21,616 | 31,851 | 35,699 | 43,215 | 64,838 | 66,285 | 181,814 |
| 3 | Bing Aerial Imagery | 0 | 250 | 543 | 628 | 1,521 | 7,987 | 9,704 | 9,369 | 11,150 | 13,935 | 14,177 | 14,847 | 14,617 | 14,549 | 17,520 | 33,157 | 31,298 | 114,959 |
| 4 | GPS | 24 | 73 | 142 | 158 | 379 | 2,086 | 1,968 | 1,784 | 2,756 | 4,071 | 4,474 | 5,516 | 5,437 | 4,636 | 5,351 | 11,780 | 12,148 | 43,846 |
| 5 | Streetlevel Imagery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 552 | 1,525 | 3,804 | 5,611 | 5,473 | 4,915 | 6,128 | 12,539 | 13,138 | 41,649 |
| 6 | Knowledge | 5 | 36 | 63 | 95 | 150 | 5,231 | 5,692 | 5,528 | 4,952 | 4,737 | 4,846 | 4,643 | 4,101 | 4,110 | 3,955 | 3,988 | 3,630 | 29,296 |
| 7 | Esri World Imagery | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 3 | 884 | 2,528 | 3,875 | 5,311 | 5,061 | 4,733 | 5,468 | 5,750 | 5,507 | 19,853 |
| 8 | Maxar Imagery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,099 | 5,927 | 6,691 | 6,777 | 4,527 | 886 | 509 | 16,698 |
| 9 | Mapillary | 0 | 0 | 0 | 0 | 0 | 76 | 294 | 452 | 733 | 832 | 2,899 | 4,476 | 4,421 | 3,594 | 3,428 | 3,404 | 3,383 | 15,920 |
| 10 | Mapbox Satellite | 0 | 0 | 0 | 0 | 5 | 589 | 1,309 | 1,513 | 1,669 | 1,651 | 1,943 | 2,692 | 2,740 | 2,399 | 2,376 | 2,231 | 2,250 | 13,098 |
| 11 | OSM Notes | 0 | 0 | 0 | 0 | 11 | 41 | 28 | 41 | 38 | 42 | 35 | 32 | 32 | 1,450 | 2,055 | 4,810 | 5,027 | 11,727 |
| 12 | mapwithai | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 220 | 1,310 | 1,773 | 6,674 | 2,268 | 1,850 | 10,960 |
| 13 | streetside | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1,450 | 2,261 | 2,121 | 1,425 | 1,646 | 1,639 | 1,785 | 8,416 |
| 14 | DigitalGlobe Imagery (now Maxar) | 0 | 4 | 2 | 11 | 61 | 219 | 189 | 164 | 2,250 | 3,276 | 3,193 | 827 | 604 | 30 | 33 | 41 | 19 | 7,019 |
| 15 | tms[]:https:// | 0 | 0 | 0 | 0 | 0 | 36 | 635 | 1,236 | 2,079 | 1,365 | 1,224 | 1,408 | 979 | 574 | 271 | 170 | 39 | 6,764 |
| 16 | OSM Note | 0 | 1 | 1 | 3 | 44 | 307 | 318 | 342 | 368 | 438 | 473 | 1,394 | 1,755 | 1,799 | 1,753 | 1,586 | 1,437 | 5,350 |
| 17 | OpenStreetMap Carto (Standard) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 129 | 184 | 331 | 952 | 1,151 | 1,336 | 1,408 | 1,279 | 1,124 | 5,109 |
| 18 | OpenStreetCam Images | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 101 | 135 | 1,470 | 2,239 | 2,011 | 301 | 9 | 1 | 3 | 4,574 |
| 19 | JOSM Validator | 1 | 2 | 1 | 1 | 3 | 17 | 20 | 47 | 46 | 45 | 47 | 3,175 | 417 | 166 | 86 | 43 | 19 | 3,499 |
| 20 | Strava | 0 | 0 | 0 | 0 | 0 | 78 | 198 | 298 | 335 | 342 | 311 | 957 | 1,230 | 945 | 786 | 815 | 702 | 3,491 |
| 21 | website | 0 | 2 | 6 | 8 | 28 | 190 | 228 | 242 | 312 | 468 | 534 | 596 | 619 | 648 | 600 | 728 | 776 | 3,224 |
| 22 | kartaview | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 50 | 911 | 1,022 | 939 | 905 | 2,828 |
| 23 | Osmose | 0 | 0 | 0 | 2 | 9 | 230 | 310 | 347 | 381 | 376 | 484 | 602 | 546 | 464 | 489 | 471 | 413 | 2,601 |
| 24 | wiki.openstreetmap.org | 2 | 3 | 5 | 6 | 22 | 135 | 124 | 135 | 153 | 212 | 280 | 307 | 358 | 371 | 315 | 398 | 386 | 1,987 |
| 25 | Wikipedia | 0 | 4 | 6 | 16 | 34 | 215 | 177 | 211 | 252 | 207 | 230 | 248 | 244 | 263 | 216 | 252 | 248 | 1,849 |
| 26 | BDOrtho | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 127 | 253 | 300 | 332 | 521 | 534 | 584 | 541 | 534 | 466 | 1,801 |
| 27 | wikipedia | 3 | 5 | 14 | 16 | 34 | 233 | 199 | 199 | 212 | 209 | 227 | 250 | 225 | 213 | 178 | 226 | 187 | 1,638 |
| 28 | Geotagged Images | 0 | 0 | 0 | 0 | 2 | 33 | 20 | 33 | 37 | 45 | 58 | 317 | 425 | 476 | 487 | 468 | 426 | 1,538 |
| 29 | Cadastre | 0 | 1 | 11 | 13 | 32 | 183 | 198 | 205 | 227 | 216 | 243 | 319 | 333 | 377 | 374 | 393 | 325 | 1,515 |
| 30 | Website | 0 | 0 | 0 | 1 | 4 | 53 | 42 | 64 | 98 | 102 | 121 | 153 | 189 | 255 | 290 | 463 | 394 | 1,501 |
| 31 | mapilio | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 308 | 694 | 716 | 1,405 |
| 32 | aerial_imagery | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1,221 | 8 | 11 | 28 | 20 | 13 | 13 | 25 | 55 | 1,338 |
| 33 | panoramax | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 413 | 980 | 1,214 |
| 34 | Geoportal 2: Orthophotomap | 0 | 0 | 0 | 0 | 1 | 96 | 166 | 144 | 176 | 144 | 189 | 288 | 365 | 359 | 368 | 354 | 326 | 1,205 |
| 35 | KartaView | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 532 | 514 | 352 | 270 | 246 | 1,179 |
| 36 | cadastre | 0 | 3 | 9 | 13 | 37 | 212 | 189 | 199 | 213 | 222 | 230 | 246 | 227 | 207 | 192 | 192 | 172 | 1,162 |
| 37 | basemap.at | 0 | 0 | 0 | 0 | 26 | 121 | 149 | 192 | 163 | 164 | 151 | 208 | 246 | 362 | 296 | 255 | 199 | 1,123 |
| 38 | gpx | 1 | 7 | 8 | 15 | 16 | 131 | 157 | 168 | 169 | 153 | 164 | 188 | 152 | 139 | 129 | 148 | 129 | 1,105 |
| 39 | osmose | 0 | 0 | 1 | 2 | 11 | 98 | 139 | 115 | 124 | 132 | 177 | 196 | 179 | 173 | 159 | 140 | 114 | 1,020 |
| 40 | .gpx data file | 0 | 2 | 3 | 4 | 14 | 101 | 106 | 101 | 105 | 141 | 133 | 169 | 143 | 120 | 114 | 98 | 90 | 995 |
| 41 | OSM | 0 | 0 | 1 | 2 | 14 | 95 | 105 | 101 | 130 | 112 | 147 | 143 | 123 | 110 | 110 | 100 | 115 | 885 |
| 42 | GPX | 1 | 2 | 4 | 13 | 13 | 97 | 117 | 118 | 112 | 112 | 116 | 152 | 122 | 91 | 100 | 97 | 97 | 879 |
| 43 | microsoft/BuildingFootprints | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 106 | 88 | 204 | 322 | 288 | 179 | 841 |
| 44 | PNOA Spain | 0 | 0 | 1 | 0 | 1 | 13 | 22 | 19 | 32 | 66 | 96 | 153 | 215 | 229 | 250 | 229 | 212 | 837 |
| 45 | wiki | 0 | 0 | 1 | 2 | 3 | 80 | 87 | 80 | 102 | 93 | 109 | 122 | 122 | 137 | 107 | 125 | 119 | 780 |
| 46 | Google Maps | 0 | 0 | 0 | 0 | 3 | 17 | 9 | 9 | 15 | 43 | 45 | 58 | 96 | 63 | 84 | 184 | 177 | 765 |
| 47 | Validator | 0 | 0 | 0 | 2 | 1 | 33 | 14 | 8 | 11 | 10 | 7 | 664 | 38 | 20 | 14 | 9 | 6 | 765 |
| 48 | youtube | 0 | 0 | 0 | 0 | 0 | 6 | 13 | 25 | 31 | 39 | 70 | 110 | 146 | 138 | 172 | 213 | 206 | 750 |
| 49 | Japan GSI | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 16 | 75 | 142 | 168 | 147 | 149 | 147 | 154 | 180 | 164 | 726 |
| 50 | Bavaria (80 cm) | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 11 | 25 | 66 | 116 | 214 | 273 | 266 | 263 | 164 | 2 | 701 |
| 51 | MapBox | 0 | 0 | 0 | 0 | 0 | 345 | 253 | 159 | 103 | 47 | 44 | 18 | 13 | 15 | 15 | 12 | 6 | 668 |
| 52 | wikidata | 0 | 0 | 0 | 0 | 0 | 18 | 18 | 41 | 51 | 54 | 80 | 95 | 107 | 141 | 128 | 152 | 150 | 661 |
| 53 | PDOK aerial imagery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33 | 71 | 84 | 137 | 158 | 213 | 204 | 197 | 191 | 658 |
| 54 | North Rhine-Westphalia aerial photograph | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 133 | 226 | 251 | 233 | 229 | 212 | 650 |
| 55 | White) | 0 | 0 | 0 | 0 | 0 | 12 | 15 | 24 | 21 | 23 | 56 | 257 | 261 | 38 | 0 | 0 | 0 | 631 |
| 56 | local survey | 0 | 0 | 4 | 4 | 8 | 59 | 66 | 71 | 83 | 91 | 118 | 121 | 125 | 133 | 97 | 97 | 101 | 623 |
| 57 | OSM Data | 0 | 0 | 0 | 0 | 0 | 4 | 5 | 5 | 8 | 12 | 17 | 161 | 307 | 248 | 121 | 54 | 42 | 603 |
| 58 | OpenStreetMap (Standard Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 20 | 23 | 56 | 257 | 263 | 37 | 0 | 0 | 0 | 592 |
| 59 | MapBox Satellite | 0 | 0 | 0 | 0 | 0 | 413 | 176 | 54 | 31 | 16 | 18 | 8 | 5 | 5 | 6 | 3 | 3 | 575 |
| 60 | Wikidata | 0 | 0 | 0 | 0 | 0 | 16 | 11 | 56 | 42 | 47 | 60 | 76 | 89 | 114 | 100 | 110 | 120 | 558 |
| 61 | Ortskenntnis | 0 | 0 | 0 | 0 | 21 | 118 | 93 | 91 | 89 | 111 | 108 | 101 | 111 | 80 | 89 | 67 | 67 | 548 |
| 62 | extrapolation | 3 | 11 | 9 | 15 | 18 | 49 | 41 | 36 | 46 | 82 | 72 | 74 | 71 | 81 | 73 | 109 | 98 | 542 |
| 63 | websites | 0 | 0 | 3 | 2 | 7 | 47 | 43 | 44 | 54 | 58 | 82 | 104 | 100 | 78 | 86 | 105 | 71 | 525 |
| 64 | OSM Inspector | 0 | 0 | 0 | 2 | 8 | 79 | 55 | 82 | 113 | 78 | 78 | 80 | 89 | 75 | 52 | 61 | 40 | 513 |
| 65 | osm | 0 | 0 | 0 | 1 | 7 | 63 | 61 | 61 | 69 | 77 | 92 | 77 | 79 | 61 | 63 | 49 | 48 | 512 |
| 66 | PNOA | 1 | 3 | 13 | 9 | 10 | 76 | 66 | 95 | 91 | 96 | 123 | 115 | 97 | 91 | 92 | 78 | 60 | 509 |
| 67 | local | 0 | 0 | 1 | 1 | 11 | 34 | 45 | 44 | 36 | 63 | 73 | 65 | 80 | 80 | 44 | 44 | 49 | 498 |
| 68 | google maps | 0 | 0 | 1 | 0 | 1 | 6 | 6 | 6 | 23 | 40 | 39 | 59 | 65 | 31 | 57 | 91 | 82 | 494 |
| 69 | web | 0 | 0 | 1 | 1 | 6 | 56 | 51 | 47 | 50 | 75 | 63 | 81 | 68 | 75 | 77 | 89 | 81 | 494 |
| 70 | www.openstreetmap.org/changeset/ | 0 | 0 | 0 | 0 | 0 | 1 | 20 | 33 | 37 | 64 | 87 | 98 | 121 | 128 | 124 | 133 | 123 | 492 |
| 71 | personal knowledge | 0 | 2 | 4 | 2 | 18 | 67 | 58 | 62 | 50 | 60 | 60 | 63 | 71 | 46 | 44 | 61 | 62 | 491 |
| 72 | Streetside | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 8 | 35 | 24 | 21 | 38 | 258 | 240 | 490 |
| 73 | Internet | 0 | 0 | 0 | 0 | 2 | 57 | 47 | 50 | 41 | 57 | 54 | 56 | 72 | 76 | 65 | 92 | 83 | 475 |
| 74 | BANO | 0 | 0 | 0 | 0 | 0 | 56 | 64 | 67 | 75 | 58 | 61 | 96 | 121 | 141 | 157 | 108 | 72 | 469 |
| 75 | vor Ort | 0 | 0 | 0 | 0 | 11 | 50 | 51 | 52 | 67 | 71 | 95 | 90 | 97 | 97 | 71 | 67 | 62 | 468 |
| 76 | swisstopo SWISSIMAGE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 155 | 184 | 186 | 186 | 178 | 468 |
| 77 | cadastre-dgi-fr | 4 | 27 | 27 | 33 | 41 | 112 | 100 | 82 | 75 | 75 | 63 | 80 | 64 | 64 | 47 | 44 | 33 | 468 |
| 78 | National Agriculture Imagery Program | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 85 | 106 | 98 | 110 | 153 | 114 | 463 |
| 79 | observation | 0 | 2 | 6 | 3 | 15 | 80 | 60 | 74 | 61 | 47 | 58 | 60 | 65 | 66 | 52 | 41 | 36 | 449 |
| 80 | Norway Orthophoto | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 60 | 82 | 95 | 155 | 112 | 115 | 106 | 418 |
| 81 | IGN | 0 | 0 | 0 | 0 | 0 | 4 | 7 | 23 | 41 | 48 | 55 | 58 | 78 | 70 | 76 | 87 | 74 | 410 |
| 82 | {switch:a,b,c,d}.tiles.mapbox.com | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 37 | 59 | 212 | 92 | 37 | 3 | 0 | 0 | 0 | 409 |
| 83 | 0 | 3 | 0 | 0 | 1 | 19 | 9 | 24 | 19 | 27 | 18 | 29 | 61 | 36 | 45 | 78 | 55 | 407 | |
| 84 | Catastro Spain | 0 | 0 | 0 | 1 | 0 | 7 | 24 | 25 | 28 | 56 | 72 | 90 | 75 | 69 | 82 | 98 | 86 | 407 |
| 85 | OpenTopoMap | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 22 | 35 | 94 | 119 | 109 | 118 | 103 | 79 | 406 |
| 86 | Ortho HR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 54 | 107 | 216 | 195 | 27 | 8 | 5 | 405 |
| 87 | internet | 0 | 0 | 0 | 2 | 1 | 39 | 33 | 40 | 38 | 47 | 68 | 65 | 51 | 60 | 51 | 73 | 53 | 404 |
| 88 | MAPNIK | 0 | 0 | 0 | 0 | 1 | 197 | 155 | 47 | 27 | 5 | 3 | 22 | 10 | 9 | 8 | 7 | 4 | 403 |
| 89 | JOSM | 0 | 1 | 2 | 1 | 3 | 51 | 47 | 60 | 60 | 59 | 60 | 66 | 56 | 49 | 42 | 21 | 19 | 398 |
| 90 | Maps4BW | 0 | 0 | 0 | 0 | 24 | 99 | 101 | 102 | 95 | 107 | 98 | 89 | 96 | 82 | 35 | 6 | 4 | 396 |
| 91 | 1.19) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 124 | 322 | 16 | 5 | 6 | 1 | 393 |
| 92 | 1.79) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 124 | 319 | 18 | 4 | 8 | 1 | 393 |
| 93 | - | 0 | 0 | 0 | 0 | 8 | 49 | 35 | 53 | 49 | 63 | 54 | 44 | 46 | 49 | 50 | 50 | 40 | 388 |
| 94 | www.lgl-bw.de) | 0 | 0 | 0 | 0 | 1 | 46 | 66 | 68 | 73 | 59 | 76 | 115 | 130 | 123 | 56 | 3 | 0 | 378 |
| 95 | geoportal | 0 | 0 | 0 | 0 | 3 | 83 | 62 | 69 | 51 | 50 | 66 | 64 | 71 | 49 | 52 | 46 | 44 | 377 |
| 96 | MML Orthophoto | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 27 | 57 | 64 | 126 | 154 | 128 | 73 | 377 |
| 97 | imagery | 0 | 1 | 1 | 2 | 3 | 17 | 15 | 27 | 32 | 51 | 66 | 69 | 54 | 42 | 40 | 55 | 64 | 377 |
| 98 | visit | 0 | 3 | 0 | 1 | 5 | 41 | 33 | 44 | 41 | 63 | 59 | 45 | 49 | 53 | 55 | 38 | 43 | 375 |
| 99 | 2.39) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 131 | 288 | 16 | 4 | 6 | 2 | 370 |
| 100 | Maps4BW (LGL-BW | 0 | 0 | 0 | 0 | 0 | 43 | 65 | 62 | 71 | 57 | 71 | 111 | 129 | 124 | 57 | 3 | 0 | 370 |